امروز یکشنبه 31 فروردین 1404
0
مزایای استفاده از سازه های گنبدی بتن آرمه:

سرعت در ساخت:

گنبدهای بتن آرمه در مقایسه با دیگر سازه‌های قدیمی با ابعاد محیطی یا حجم یکسان، سریع تر اجرا می‌شوند.

به عنوان مثال:

-اجرای سازه فوقانی یک گنبد بتن آرمه جهت ذخیره‌سازی 15 هزار تن غله ظرف مدت 4 هفته.

- اجرای سازه‌ فوقانی یک گنبد بتن آرمه جهت یک مرکز چند منظوره ورزشی (ژیمنازیوم) به مساحت 1500 متر‌مربع ظرف مدت 3 هفته.
سه دلیل اصلی چنین سرعتی در اجرا به شرح ذیل می باشد:
1-استفاده از بالن پر شده از گاز هزینه و زمان اجرا را در مقایسه با روش قدیمی به نصف تقلیل می‌دهد.

2-یکی از دلایل خوب پائین‌آوردن هزینه نیروی انسانی، استفاده از shotcrete)پاشیدن بتن) می‌باشد.

3-چون اجرای پروژه در داخل بالن انجام می‌شود، تاثیرات آب و هوایی در زمان‌بندی‌ اجرای پروژه تاثیر ندارد. 2) مقاومت و پایداری:
طی قرون متمادی شکل کره به عنوان مقاوم ترین سازه شناخته شده است: پوسته تخم مرغ، خانه اسکیموها، انبارها یا مخازن تحت فشار بالا و غیره.
ساختمان‌های بیضوی ما بهترین مقاومت و پایداری طبیعی را دارا می‌باشند.
گنبدهای بتن آرمه با بهترین مصالح به شرح ذیل ساخته می‌شوند:
1-بالن P.V.C مسلح شده با پلی استر (280 گرم بر متر‌مربع (
2-فوم VETHANE مقاوم در برابر حریق و آتش‌سوزی (با چگالی 55 کیلوگرم بر متر‌مکعب (

3-اجرای بتن شات کریت با میزان سیمان 400 تا 450 کیلوگرم سیمان در هر متر‌مکعب)یا مشابه آن(

4-می توان از اضافه کردن آنتی‌اسیدها و افزودنی ها به بتن، جهت نگهداری محصولاتی چون فسفات، نیترات و آمو‌‌‌‌نیترات و غیره، استفاده نمود.
3) بهینه سازی:

گنبدهای بتن‌آرمه نسبت حجم به سطح را افزایش می‌دهد.


4 عایق حرارتی (VETHANE):

عایق حرارتی، در دوره کیورینگ و عمل‌آوری بتن، آن را در شرایط ایده‌آل نگه می‌دارد. همچنین بتن تحت تاثیر شرایط جوی و نوسانات دمای هوا در روز یا شب قرار نگرفته و عمل‌آوری بتن نیز در محیط بسته و با رطوبت هوا اتفاق می‌افتد. شایان ذکر است در این حالت سازه بتن آرمه از شوک های حرارتی مصون بوده و مقاومت خوبی در مقابل ترک پیدا می کنند. همچنین در بیشتر موارد این عایق حرارتی جمع شدگی های سطح بتن را حذف می نماید.
ضخامت فوم‌ VETHANE حداقل 50 میلیمتر می‌باشد. البته ما می‌توانیم این ضخامت را با توجه به کاربرد آن در سردخانه‌ها، اماکن مذهبی، مدارس و غیره افزایش دهیم.

5) خاصیت ضد آب (waterproof):

ضد آب بودن سازه از اولین مراحل اجرا با باد شدن بالن ایجاد می شود. بالن پس از ساخت سازه در جای خود باقی می ماند و باعث سختی و مقاومتی مضاعف به شرح ذیل می شود:

-مقاومت در برابر آب

-مقاومت در برابر هوا در یک شرایط جوی کنترل شده (اکسیژن، ازت، دی اکسید کربن، خشکی هوا و غیره


(6 هزینه پائین تعمیرات و نگهداری:

سطح خارجی گنبد بتن آرمه کاملاً صیقلی بوده و به راحتی تمیز می گردد و بنابراین هیچگونه خوردگی یا زدگی نمی‌تواند روی این گنبد بتن آرمه ایجاد شود.

 
7) زیبایی:

بجز بخشی از مزایای سازه های گنبدی که عنوان شد، زیبایی و ظرافت این سازه ها نیز از دیگر مزایای قابل ذکر است.
برای اثبات این صحبت کافیست برخی از پروژه های اجرا شده توسط شرکت PIRS مانند مرکز فضایی در تولوز فرانسه و تاتر Imax در Poitiers فرانسه را بررسی نمایید.

8) تنوع:

گنبدهای بتن‌آرمه که جهت ذخیره‌سازی بکار می‌روند اغلب مجهز به درهای بزرگی هستند که اجازه ورود لودرهای بزرگ جهت بارگیری را می دهند. در طی فصول غیر‌کاری می‌توان از آنها به عنوان انبار مواد دیگر استفاده نمود. همچنین گنبدها می توانند دارای پنجره یا سقف شیشه ای نیز باشند.


9) سازگاری:

هیچ استانداردی برای اندازه گنبدها تعیین نشده است. ولی شکل گنبدها می تواند از 4/3 کره تا 3/1 کره و دارای قطرهای 6 الی 85 متر باشد.

 


موضوعات مرتبط: سازه های بتنی

0
چکیده

سالهای زیادی است که بتن بعنوان یک ماده ساختمانی مهم در ساخت و سازه‌های بتنی چون ساختمانها، سدها، پلها، تونلها، راهها، اسکله‌ها و برجها و سازه‌های خاص دیگر کاربرد دارد. در اکثر موارد به بتن بعنوان ماده‌ای مقاوم در برابر نیروهای فشاری نگریسته می‌شده است. انجام پروژه‌های وسیع تحقیقاتی بر روی مواد مختلف تشکیل دهنده بتن و ازمایش‌ بتن‌های مختلف با مواد جدید در سالهای آخر قرن اخیر منجر به پیدایش بتن‌هایی شده است که علاوه بر تأمین مقاومت خواص دیگری از این ماده نظیر دوام، کارایی، نرمی و مقاومت در برابر عواملی چون آتش و محیط و هوازدگی را دستخوش تغییرات اساسی نموده است. علاوه بر دگرگونی و تحول در مواد تشکیل دهنده بتن، افزودن مواد دیگری به بتن همچون افزودنیهای مختلف، انواع الیاف‌ها و حتی مواد زائدی که ارزش خاصی نداشته و باعث آلودگی محیط زیست نیز می‌شوند، موجب پیدایش بتن‌های جدید با خواص جدید و بهبود یافته شده است.

در بتن مسلح علاوه بر خود بتن بر روی آرماتور نیز تحولاتی صورت پذیرفته است. بعنوان مثال کاربرد فولادهای ضد زنگ برای مناطق بسیار خورنده، استفاده از آرماتورهای ساخته شده با الیاف‌های مختلف پلاستیکی و پلیمری از جمله تحقیقاتی بوده است که نتایج اولیه سودمندی بدست داده است، لیکن کار بر روی آنها و تحقیقات وسیع‌تر و دراز مدت برای بررسی داوم آنها هنوز ادامه داشته و به قرن آینده خواهد رسید.

هدف از مقاله اخیر عنوان نمودن پاره‌ای از دستاوردهای اخیر در بتن و بتن مسلح و ادامه راه در سالهای آینده می‌باشد. در این خصوص به تحول دستیابی به بتن‌های با مقاومت زیاد و بسیار زیاد و بالاتر ازMPa 100 و همچنین بتن‌‌‌های توانمند با عملکرد بالا خواهیم پرداخت. همچنین کاربرد مواد مختلف و الیاف‌ها برای افزایش نرمی بتن که مسأله بسیار مهمی در پدیده زلزله و بارهای دینامیکی بر روی سازه‌های بتنی است، بیان خواهد شد. در ادامه به بتن‌هایی که بسیار کارا بوده و نیاز به لرزاندن نداشته و درعین حال مقاومت زیادی دارند، اشاره خواهد شد. در بخش دیگری از مقاله کاربرد بتن بعنوان راه حلی برای کاهش آلودگی محیط زیست توضیح داده خواهد شد. در بخش پایانی آخرین نتایج و کاربرد محدود آرماتورها با جنسیت‌های مختلف از جمله الیاف کربنی، پلیمری و پلاستیکی شده است.

باید اذعان نمود که نتایج تحقیقات سالهای آخر قرن حاضر و ادامه‌ آنها در آینده و قرن جدید می‌تواند نگرش تازه‌ای به بتن بعنوان یک ماده ساختمانی پرمصرف بدهد. این نتایج منجر خواهد شد تا دیدگاه بتن بعنوان تنها یک ماده با مقاومت فشاری خوب به کلی دگرگون شده و خواص ویژه بتن‌های جدید نظر اکثر دست‌اندرکاران پروژه‌های بزرگ عمرانی را در جهان بخود معطوف سازد.


0

پاره ای از محدودیت ها و ویژگیهای فنی سقف تیرچه و بلوک که در سرفصل گفته شد شامل تیرچه پیش ساخته نیز می شود. در زیر ویژگیهای مهم اجزای تشکیل دهنده خود تیرچه، مورد بحث قرار می گیرد. تیرچه پیش ساخته از قسمت های زیر تشکیل می یابد:

1-1  عضو کششی

1-2  میلگردهای عرضی

1-3  میلگرد بالائی

1-4  بتن پاشنه

1-1  عضو کششی

حداقل تعداد میلگرد کششی دو عدد بوده و سطح مقطع میلگردهای کششی از طریق محاسبه تعیین می شود. در هر صورت، سطح مقطع میلگرد کششی برای فولاد نرم، از 0.0025، و برای فولاد نیم سخت و سخت، از 0.0015 برابر سطح مقطع جان تیر نباید کمتر باشد. توصیه می شود قطر میلگرد کششی از 8 میلیمتر کمتر و از 16 میلیمتر بیشتر نباشد. در مورد تیرچه هایی که ضخامت بتن پاشنه آنها 5.5 سانتیمتر یا بیشتر باشد، می توان حداکثر قطر میلگرد کششی را به 20 میلیمتر افزایش داد. برای صرفه جویی در مصرف فولاد و پیوستگی بهتر آن با بتن، معمولا از میلگرد آجدار، به عنوان عضو کششی استفاده می شود. حداکثر سطح مقطع میلگردهای کششی، بستگی به نوع فولاد و بتن مصرفی دارد و نباید از مقادیر مندرج در جدول زیر بیشتر باشد.

حد جاری شدن فولا بر حسب

کیلوگرم بر سانتیمتر مربع

200

3600

4200   

تاب فشاری بتن 250 کیلوگرم بر سانتیمتر مربع

3.4%

2.98%

2.1%

تاب فشاری بتن 300 کیلوگرم بر سانتیمتر مربع

4.2%

3.7%

2.6%

تاب فشاری بتن 350 کیلوگرم بر سانتیمتر مربع

4.85%

4.24%

3%


0
کنترل PH پساب های صنعتی

کنترل PH پساب‌های صنعتی بعلت تغییرات مداوم شرایط و مشخصات شیمیایی و فیزیکی پساب، کار بسیار دشواری است. برای تنظیم PH پساب، با توجه به شرایط آن از مواد قلیایی یا اسیدی استفاده می‌شود. طراحی سیستم کنترل PH پساب، با بررسی داده‌های حاصل از آزمایشات انجام شده بر روی نمونه‌های جمع‌آوری شده از پساب صورت می‌گیرد. امروزه در اکثر موارد از نمونه‌گیری‌های اتوماتیک جهت بدست آوردن میزان قلیائیت و اسیدی بودن پساب استفاده می‌شود. این دستگاهها با نمونه‌برداری از پساب و تیتراسیون آن قادرند تا شرایط پساب را بطور دقیق گزارش کنند. طراح با استفاده از این اطلاعات وسم منحنی‌های مربوطه می‌تواند سیستم مناسب برای کنترل PH پساب را طراحی کند. در این مقاله با بررسی شرایط پساب، روش مناسب برای انتخاب سیستم کنترل PH ارایه شده است.
در هنگام تصفیه بیولوژیکی، فیزیکی و شیمیایی پساب، دستیابی به PH مطلوب و حفظ آن بسیار با اهمیت بوده و باید اطمینان حاصل کرد که پساب تصفیه شده با استانداردهای تخلیه پساب یا پیش تصفیه صنعتی مطابقت دارد. لازم بذکر است کنترل PH پساب، اغلب یکی ازمشکلترین جنبه‌های طراحی سیستم تصفیه پساب است.
در نظر بگیرید چه اتفاق می‌افتد وقتی یک شیمیست یک باز را با یک اسید تیتر می‌کند. ممکن است ml100 اسید اضافه کند اما نقطه پایان تیتراسیون با آخرین قطره مشخص می‌شود. در حالی که قطره آخر حدود یک قسمت از کل 2000 قطره افزوده شده، است.
در طی تصفیه پساب، سیستم کنترل PH باید وظیفه‌ای همانند تیتراسیون را انجام دهد. لازم به توضیح است که این عملیات نسبت به تیتراسیون آزمایشگاهی دشوارتر است زیرا در این حالت ترکیب پساب بطور مداوم تغییر می‌کند. طراحی سیستم مناسب،‌نیاز به اطلاعات دقیقی در مورد دبی، PH، قلیائیت یا اسیدیته پساب و میزان و سرعت تغییرات این پارامترها دارد.
در حالت کلی یک سیستم کنترل PH شامل یک یا چند راکتور، همزن،‌تجهیزات اندازه‌گیری، کنترل‌کننده‌ها و سیستم‌های تزریق ماده شیمیایی است. همچنین ممکن است از مخازن متعادل‌سازی، پیش از راکتورها و مخازن رقیق‌سازی استفاده شود. طراح سیستم باید تعداد، ‌اندازه و ترتیب راکتورها و مخازن متعادل‌سازی، شدت اختلاط در هر کدام از آنها و اندازه سیستم‌های تزریق ماده شیمیایی را تعیین کند. همچنین جنبه‌های مختلف سیستم کنترل نظیر عملیات پس‌خور یا پیش‌خور و روشهای کنترل نظیر تناسبی، انتگرالی، مشتقی و تطبیقی یا غیرخطی باید طی طراحی سیستم مشخص شوند. طراحی سیستم مناسب باید بر اساس تجزیه و تحلیل منطقی دبی، PH و داده‌های حاصل از تیتراسیون نمونه‌های جمع‌آوری شده از پساب طی مدتی که PH بیشترین تغییرات را داشته، انجام گیرد.. نمونه‌ها باید از نقاطی جمع‌آوری شوند که سیستم کنترل در آنجا قرار داده خواهد شد.
●جمع‌آوری خودکار داده‌ها
طی مرحله جمع‌آوری داده‌ها که عموماً یک الی چهار هفته طول می‌کشد، داده‌های مربوط به دبی و PH پساب بطور مداوم ثبت می‌شوند. مدت زمان نمونه‌برداری باید بحد کافی طولانی باشد تا همه عوامل مهمی که بر PH پساب تاثیرگذار هستند موردبررسی قرار گیرند. یکی از موارد فوق، چرخه‌های شست وشوی هفتگی بوده که دارای حجم‌های متفاوتی از عوامل پاک‌کننده اسیدی یا قلیایی هستند.
اما مواردی که بندرت اتفاق می‌افتند، نباید بعنوان مبنایی در طراحی سیستم در نظر گرفته شوند. هنگامی‌که این موارد اتفاق می‌افتند، برای جلوگیری از تاثیر آنها بر سیستم کنترل PH، باید در همان محل کنترل PH، انجام شود. همچنین حوادث نامطلوبی نظیر ترکیدگی یک مخزن اسید نباید در مبنای طراحی در نظر گرفته شوند.
ثبت‌کننده‌های مدرن PH، عموماً دارای کلید‌هایی هستند که برای فعال کردن سایر تجهیزات استفاده می‌شوند. تکنیک جمع‌آوری داده‌ها این طور تعریف شده است که وقتی PH پساب خارج از محدوده از پیش تعیین شده شود، ثبت‌کننده PH با نمونه‌گیری پی‌درپی فعال خواهد شد. محدوده PH بر اساس پر شدن ساعتی بطری‌های نمونه‌گیری طی یک دوره آزمایشی عموماً 24 ساعته، تنظیم می‌شود.
اگر ثبت پیوسته PH جریان پساب در دسترس باشد، از آن می‌توان برای انتخاب محدوده PH استفاده کرد. اما اگر هیچ اطلاعاتی قابل دسترسی نباشد، محدوده PH بین 5 الی 11 را می‌توان انتخاب کرد. هر نمونه پساب با PH بالا یا پایین، در یک بطری جداگانه جهت تیتراسیون آزمایشگاهی جمع‌آوری می‌شود. داده تیتراسیون با دبی و PH ثبت شده ترکیب می‌شود تا ثبت پیوسته‌ای از قلیائیت یا اسیدیته پساب ایجاد شود. با این اطلاعات، مهندس طراح می‌تواند ساختار سیستم کنترل اصلی، اندازه مخازن متعادل‌سازی، راکتورها و سیستم‌های تزریق جهت خنثی‌سازی شیمیایی را طراحی کند.
●تجزیه و تحلیل داده‌ها
پس ازنمونه‌برداری، نمونه مربوط به هر زمان جهت تعیین میزان ماده شیمیایی لازم، تیتر می‌شود. نمونه‌های پساب اسیدی و بازی با مواد شیمیایی مختلفی تیتر می شوند. همه منحنی‌های تیتراسیون از نقطه صفر شروع شده و با افزایش میزان متفاوتی از ماده شیمیایی به هر نمونه، به نقطه خنثی می‌رسند. برای تجزیه و تحلیل داده‌های بدست آمده در شرایط استفاده از مواد شیمیایی مختلف، میزان همه مواد شیمیایی افزوده شده باید به قلیائیت تبدیل شده و برحسب میلی‌گرم در لیتر از کربنات کلسیم بیان شوند. این نوع تبدیل در صنعت تصفیه پساب متداول بوده و نحوه محاسبات آن در کتاب روش‌های استاندارد (Standard Methods) توضیح داده شده است.
وقتی داده‌های تیتراسیون به قلیائیت تبدیل شدند، سپس بصورت نرمال درآورده می‌شوند. بنابراین تمام منحنی‌ها در حالتی که هیچ ماده‌ای اضافه نشده، از نقطه 7PH= عبور می‌کنند و دیاگرامی ایجاد می‌شود. بالاترین و پایین‌ترین نقاط قلیائیت بر روی منحنی‌ شکل فوق، بیانگر شرایطی بوده که پساب به بیشترین مواد شیمیایی جهت خنثی‌سازی نیاز دارد. این نقاط با داده‌های دبی متناظر، ترکیب شده و سپس جهت تعیین اندازه سیستم تزریق مواد شیمیایی استفاده می‌شوند.
برای تعیین مقدار مواد شیمیایی لازم بر حسب گالن در دقیقه، داده‌های قلیائیت به گالن‌های مواد شیمیایی خنثی‌کننده مورد نیاز برای هر گالن پساب تبدیل شده و سپس این عدد در دبی پساب بر حسب گالن در دقیقه ضرب می شود. برای مشخص کردن میزان واقعی مواد شیمیایی مورد نیاز در هر لحظه، طراح به ثبت دقیق میزان دبی جریان هر نمونه جمع‌آوری شده، نیاز دارد. طراحان باید به این نکته توجه کنند که گاهی اوقات وقتی دبی جریان پساب به نزدیک صفر می‌رسد، PH به بیشترین مقدار ممکن می‌رسد.
در نزدیکی 7PH= منحنی‌های با بیشترین شیب، بیشترین اهمیت را دارند. در این ناحیه PH پساب حتی نسبت به تغییرات ناچیزی از مواد شیمیایی بسیار حساس است. بنابراین منحنی‌های با بیشترین شیب، میزان افزودن مواد شیمیایی جهت کنترل PH در محدوده موردنظر را تعیین می کنند.
آب خالص بیشترین شیب ممکن را در PH خنثی دارد زیرا افزودن هر مقدار ماده شیمیایی سریعاً PH را تغییر می‌دهد. همچنین جریانهایی که بیشترین نیاز به ماده شیمیایی دارند، عموماً کمترین خلوص را دارا هستند، بنابراین آنها معمولاً منحنی‌های با بیشترین شیب را ندارند.
برای دسترسی اسانتر داده‌ها در هنگام طراحی سیستم، می‌توان یک منحنی PH مرکب رسم کرد. این منحنی مرکب، منحنی‌های با بیشترین نیاز به مواد شیمیایی درنواحی دور از PH بالا و پایین و همچنین منحنی‌های با بیشترین شیب در ناحیه خنثی را معرفی می‌کند.
لازم به ذکر است که منحنی مرکب در 6PH= از اسیدیته mg/l40 و در 9PH= از قلیائیت mg/l65 می‌گذرد. بیشترین میزان ماده شیمیایی مورد نیاز mg/l 600، 1 و دقت لازم برای کنترل PH در محدوده 6 الی 9 معادل mg/l105 (مجموع 40 و 65 میلی‌گرم در لیتر) است.
قابلیت دامنه، یک اصطلاح در مهندسی کنترل بوده که دقت عمل یک شیر کنترل یا پمپ اندازه‌گیری را بیان می‌کند و معادل نسبت حداکثر ظرفیت آن به حداقل افزایش قابل قبول آن است. قابلیت دامنه مورد نیاز 24/15 (1600 تقسیم بر 105) است. این عملیات را می‌توان با استفاده از یک پمپ اندازه‌گیری که در ارتباط با یک راکتور است، انجام داد.
شینسکی (shinskey) قابلیت دامنه مطلوب برای یک پمپ اندازه‌گیری را برابر 20:1 و برای شیر کنترل را برابر 35:1 الی 100:1 در نظر گرفته است. وقتی قابلیت دامنه مورد نیاز به این مقادیر نزدیک باشد طراحی باید یک سیستم کنترل PH دو مرحله‌ای را در نظر بگیرد.
●اندازه راکتور
طی عملیات کنترل PH، اختلاط مناسب موجب یکنواخت‌سازی پساب می‌شود. در این حالت سیستم کنترل می تواند مقدار ماده شیمیایی مصرفی مورد نیاز را بصورت مناسبی تعیین کند. اندازه واقعی همزن بستگی به اندازه راکتور دارد. از آنجایی که مخازن و همزن‌ها عموماً پرهزینه‌ترین اجزاء سیستم تصفیه پساب هستند لذا در هنگام طراحی بلحاظ اقتصادی سعی می‌شود که اندازه راکتورها تا حد امکان کوچک در نظر گرفته شوند. اماگاهی اوقات سرعت واکنش خنثی‌سازی کند بوده و در نتیجه تعیین دقیق اندازه راکتور مشکلتر است. همچنین در بعضی مواقع ممکن است میزان پساب ورودی به سیستم بطور ناگهانی افزایش یابد. در این شرایط استفاده از یک راکتور بزرگتر اقتصادی‌تر بوده زیرا در غیر این صورت باید از یک سیستم تزریق ماده شیمیایی که به اندازه کافی بزرگ باشد، استفاده کرد.هرگونه اختلاط یا همزدن پساب قبل از اینکه جریان پساب به راکتور برسد، می‌تواند بر اندازه راکتور کنترل PH، موثر باشد. در بیشتر موارداثر یک پساب با PH کم یا زیاد را می‌توان با عبور آن از سیستم پساب دیگر کاهش داد زیرا مخلوط کردن این جریان با سایر جریانها باعث ایجاد PH مناسب‌تر می‌شود. بنابراین با در نظر گرفتن یک مخزن متعادل‌سازی جریانها که قبل از راکتور واقع می‌شود، می‌توان دامنه نوسانات PH را بنحو مطلوبی کنترل کرد.
یک واکنش خنثی سازی ممکن است بعلت واکنش کند بعضی مواد موجود در پساب یا در حالت عمومی‌تر بدلیل بعضی مواد شیمیایی که برای خنثی‌سازی وارد پساب می‌شوند، سرعت پایینی داشته باشد. آهک و منیزیم نمونه‌هایی از مواد شیمیایی خنثی‌کننده بوده که سرعت واکنش آنها کند است. اگرچه سرعت واکنش آنها خیلی کند‌تر از هیدروکسید سدیم وکربناب کلسیم است ولی بعلت ارزان بودن آنها، عموماً‌در سیستم‌های تصفیه پساب از آنها استفاده می‌شود.
در سیستم‌های تصفیه پساب عموماً از آهک و اکسید منیزیم بصورت دوغابه استفاده می‌شود. برای مواد شیمیایی دوغابه‌ای، شدت واکنش خنثی‌سازی متناسب با مساحت سطح تماس ذرات بوده و زمانی که PH به حالت خنثی نزدیک می‌شود، به دلیل اینکه ذرات واکنش‌دهنده در این دوغابه‌ها اندازه یکنواختی ندارند، سرعت واکنش کاهش می‌یابد. در واکنش خنثی سازی پساب، ابتدا ذرات کوچک موجود در دوغابه‌ که فعالیت بیشتری دارند واکنش می‌دهند و زمانی که PH به محدوده خنثی‌نزدیک می‌شود واکنش‌پذیری سیستم کمتر شده و ذرات باقی مانده دوغابه وارد واکنش می‌شوند.
اگر وقتی آهک بعنوان ماده شیمیایی خنثی ساز در یک راکتور کوچکتر از اندازه معمول استفاده می‌شود PH به محدوده بالای 9 برسد یک فرارفت کنترل نشده ایجاد خواهد شد. اگر اکسید منیزیم بعتوان ماده خنثی ساز در یک راکتور کوچکتر از اندازه معمول استفاده شود مشکلات کمتر است. اکسید منیزیم تنها بر ذرات کوچک و بعضی ذرات درشت موجود در پساب تاثیر‌گذار است زیرا اکسید منیزیم فقط PH پساب را می‌تواند به نزدیکی 9 هدایت کند.
گاهی اوقات مشکلات بوجود آمده بر اثر سرعت پایین مواد را می‌توان با طراحی یک واحد خنثی‌سازی دومرحله‌ای برطرف کرد. این عمل ممکن است با برگشت دادن مواد واکنش‌نداده به راکتور مرحله اول انجام شود. پس ماده تازه یا یک ماده واکنش‌پذیرتر به منظور تکمیل واکنش خنثی‌سازی می‌تواند در مرحله دوم استفاده شود.
در بعضی موارد کامل شدن واکنش خنثی سازی پساب با آهک یا منیزیم حدود یک ساعت طول می‌کشد. اگر پساب دارای مواد شیمیایی کند واکنش‌دهنده یا ماده خنثی‌ساز دوغابه‌ای باشد، برای تهیه بهینه حجم راکتور و همزن مورد نیاز ممکن است به تست‌های راکتور در مقیاس پایلوت نیاز باشد.
●مدلسازی
گاهی اوقات از یک مخزن متعادل‌سازی به منظور اختلاط پساب‌های اسیدی و قلیایی استفاده شده تا نیازی به راکتور خنثی‌سازی نباشد. این موضوع را می‌توان با داده‌های بدست آمده از نمونه‌برداری‌های انجام شده از پساب ارزیابی کرد. از ترکیب داده‌های تیتراسیون و دبی، میزان مواد شیمیایی مورد نیاز بدست می‌آید که این عمل با انتگرال‌گیری عددی به منظور مشابه‌سازی عملکرد یک مخزن متعادل‌سازی انجام شود.
برای انجام این کار، مقادیر PH و دبی ثبت‌شده از داده‌های جمع‌آوری شده اولیه در فواصل زمانی مشخصی (عموماً هر 1 الی 10 دقیقه) تقسیم می‌شوند و داده‌ها در یک صفحه بصورت خطوط دبی و PH ترسیم می شوند. اگر از یک ترسیم‌کننده الکترونیک استفاده شود، می‌توان مستقیماً از داده‌های بدست آمده نمودارهای مربوطه را رسم کرد.
پس منحنی‌ تیتراسیون طراحی برای تبدیل هر نقطه از داده PH به قلیائیت (برحسب میلی‌گرم در لیتر) استفاده می‌شود. با ضرب این عدد در شدت جریان پساب، منحنی‌ میزان قلیائیت برحسب lb/min بدست می‌آید. با انتگرال عددی منحنی قلیائیت می‌توان بطور مستقیم تاثیر مخزن متعادل‌سازی را بر روی سیستم تصفیه پساب مدلسازی کرد. برای جریان عبوری از یک مخزن با حجم ثابت می‌توان از رابطه زیر استفاده کرد.
که
C = قلیائیت مخزن (mg/L as CaCo3)
Cw = قلیائیت خوراک (mg/L as CaCo3)
F= شدت جریان عبوری از مخزن در طی افزایش زمان (gal/min)
V= حجم مخزن (gal)
TΔ= فاصله زمانی (min)
بدین ترتیب با انتگرال‌گیری از داده‌های بدست آمده، می‌توان قلیائیت پساب متعادل شده را در هر لحظه بدست آورد. همچنین می‌توان وضعیت PH مخزن متعادل سازی را توسط تیتراسیون مشخص کرد. شکل (8) کاربردی از این روش مدلسازی را برای یک جریان پساب واقعی نشان می‌دهد که سه مخزن متعادل‌سازی مختلف برای یک دوره 8 ساعته مورد ارزیابی قرار داده شده‌اند. این شکل نحوه تغییرات PH را در مخازن با اندازه‌های مختلف نشان می‌دهد.
در این مورد، یک مخزن متعادل‌سازی 1000 گالنی یا بزرگتر می‌تواند مشکلات PH پایین را بدون نیاز به سیستم افزودنی ماده شیمیایی خنثی‌کننده، رفع کند.
یک مخزن 4000 گالنی نیز می‌تواند مشکلات PH بالا را دراین شرایط بخوبی برطرف کند. افزایش حجم مخزن نشان می‌دهد که دوره نمونه‌برداری نباید در شرایط تخلیه‌های قلیایی قابل ملاحظه باشد. بنابراین طرح نهایی این سیستم شامل یک مخزن متعادل‌سازی 2000 گالنی و یک راکتور منفرد بایک سیستم تزریق ماده شیمیایی اسیدی است.
●●نتیجه‌گیری
برای طراحی سیستم کنترل PH، نیاز به اطلاعاتی در مورد شرایط عملیاتی پساب نظیر دبی، PH و قلیائیت است. این اطلاعات از طریق نمونه‌برداری و تیتراسیون بدست می‌آیند و سپس با رسم منحنی‌های مربوطه می‌توان میزان ماده شیمیایی مورد نیاز برای خنثی‌سازی پساب را محاسبه کرد. در نهایت با در نظر گرفتن موارد فوق، طراحی و تعیین ظرفیت مناسب مخازن خنثی سازی و متعادل‌سازی انجام می‌شود.
لازم به ذکر است برای طراحی سیستم کنترل PH باید موارد زیر در نظر گرفته شوند.
▪ نمونه‌برداری پساب باید بدقت و با در نظر گرفتن شرایط سیستم انجام شود.
▪طول دوره نمونه‌برداری باید به نحوی باشد که شرایط عمومی پساب را در بر گیرد.
▪استفاده از یک مخزن متعادل‌ساز می‌تواند باعث اختلاط پساب‌ها با یکدیگر و در نتیجه موجب کاهش میزان مصرف مواد شیمیایی مورد نیاز برای واکنش خنثی سازی در راکتور کنترل PH شود.


موضوعات مرتبط: عمران-محیط زیست

0
مبانی زمین شناسی ساختمانی

فصل اول - ساختمان های گنبدی
بطور کلی، ساخت های گنبدی را می توان بعنوان ساختهایی تعریف کرد که در نتیجه نیرو های قائمی – که از پایین به بالا اثر می کنند – تشکیل می شوند.  بدیهی است که در اینجا، مقصود آن دسته از ساختمان های گنبدی شکلی است که تشکیل آنها، غیر از عوامل تکتونیکی بوده است و از جمله مهم ترین آنها، می توان گنبد های نمکی را نام برد.


موضوعات مرتبط: عمران-زمین شناسی

0

عللرایج تخریب سدهای خاکیدر ادبیات مهندسی،سدها را گاه به موجودات زنده تشبیه می‌کنند، زیرا به دلیل تغییر در وضعیت محیطزمین شناختی در طول زمان شرایط حکمفرما در سد و مخزن نیز دائما در حال تغییر است.از این رو سدها باید بگونه‌ای طراحی و اجرا شوند که در تمام طول بهره برداریپایداری قابل قبولی از خود نشان دهند. آگاهی از هر گونه تغییر در شرایط سد و محیطاطراف آن محتاج نصب دستگاههای متنوع رفتار سنجی دایمی است. آب جمع شده در مخزنممکن است از محل پی سد یا تکیه گاههای جانبی آن یا از جسم سد تراوش نماید. فرار آباز جسم سد، بویژه در سدهای خاکی اهمیت خاصی در پایداری سددارد.روشهای متنوعی برایکاستن از میزان آب نشتی و تحت کنترل در آوردن آن وجود دارد. ویژگیهای سنگ و خاکسازنده پی سد و تکیه گاهای آن، مصالح در دسترس برای ساختمان سد، نحوه طراحی وشکل انتخاب شده برای سد و سرانجام محدودیتهای اجرایی هر یک به نحوی می‌توانند درانتخاب روشهای مناسب برای آب بندی سد موثر واقع شوند.  مهمترین علل رایج تخریبسدهای خاکی سر ریز شدن سد ·  نحوه ایجاد وخسارات:این امر موجب شسته شدنتاج و نهایتا تخریب سد می‌شود. حدود 30 درصد از خرابیهای سد خاکی ناشی از سر ریزشدن آنها بوده است.· روشهای مقابله:برآورد دقیق بزرگترینسیلاب محتمل و طراحی سرریزهایی با ظرفیت مناسب تخلیه آنها، علاوه بر آن بایدفاصله سطح آزاد آب مخزنتا تاج سد (ارتفاع آزاد) بگونه‌ای در نظر گرفته شود تا بر اثر نشست سد یا امواج حاصل از زمینلرزه، آب از روی سد سر ریز نکند.  برخورد خط تراوش بادامنه پایاب: ·  نحوه ایجاد وخسارات: اگر سطح ایستایی درونسر دامنه پایاب را قطع نماید، شسته شدن ذرات ریز و ناپایداری سد را به همراه خواهدداشت.· روشهای مقابله:با بقیه زهکشهای مناسبدر پاشنه سد، خط تراوش آب به داخل جسم سد منتقل می‌شود.  رگاب · نحوه ایجاد وخسارات:شسته شدن ذرات ریز ازمیان ذرات درشت تر به تدریج به ایجاد مسیر های آزاد گذر آب منجر می‌شود.· روشهای مقابله:این کار از طریق بهحداقل رساندن مقدار و سرعت آب نشتی توسط انتخاب مصالح مناسب و تعبیه هسته نفوذناپذیر و صافیهای مناسب صورت می‌گیرد.  مسیر آزاد گذر آب · نحوه ایجاد وخسارات:در امتداد ترکهای ناشیاز شست سد یا ترکهای ایجاد شده در مراحل آغازین گسیختگی ایجاد می‌شود. به موازاتسطح خارجی لوله‌ها و مسیر آب بر، در امتداد سطح تماس بخشهای بتنیبا خاک، در سطحلایه‌های خاکی که به دقت کوبیده یا متراکم نشده‌اند و از طریق سوراخهای ایجاد شدهتوسط حیوانات حفار و ریشه گیاهان بوجود می‌آید. · راههای مقابله:چون در سدهای خاکی پساز تشکیل مسیر گذر آب، مقابله با آن دیگر امکانپذیر نیست. لذا باید در مراحلطراحی و اجرای سد دقت کافی جهت جلوگیری ار این شکل به عمل آید.  ناپایداری دامنه‌ها ·نحوه ایجاد و خسارات:نشست بدنه سد، ایجادترکهایی در طول تاج سد یا دامنه پایاب و افزایش دبی زهکشها در پاشنه سد می‌توانندنشانه‌هایی از آغاز توسعه یک گسیختگی باشند.·روشهای مقابله:طراحی مناسب شیب دامنه‌هایسراب و پایاب سد با در نظر گرفتن جنس و مشخصات مصالح مصرفی، جلوگیری از افزایشناخواسته فشار آب در جسم سد و در نظر گرفتن زمین لرزه‌های محتمل مهمترین عواملبرای مرتفع کردن این مساله است.  گسیختگی پی ·نحوه ایجاد و خسارات:اگر بر اثر بار گذاریناشی از ایجاد سد، آبگیری آن با نیروهای ناشی از زمین لرزه، تنشهای برشی ایجادشده در پی سد از مقاومت برشی مصالح بیشتر شود، پی گسیخته می‌شود. این شرایط دررسهای تحکیم نیافته اغلب بلافاصله بعد از اولین آبگیری و در رسوبات ماسه‌ای بیشتربر اثر بار گذاری چرخه‌ای زمین لرزه ایجاد می‌شود.·روشهای مقابله:تحکیم کافی خاکهایچسبنده و متراکم نمودن خاکهای بدون چسبندگی به روش تحکیم دینامیکی یا لرزش و ایجادامکان زهکشی آب در زمان وقوع زمین لرزه به توسط ایجاد ستونهای سنگی یا چاههایزهکش.  فرسایش پذیری ·نحوه ایجاد و خسارات:فرسایش سطح خارجی سد،گر چه در کوتاه مدت همانند مشکلات دیگری که ذکر شد نمی‌تواند خطر آفرین باشد. ولیدر دراز مدت ممکن است از کارآیی سد بکاهد.·روشهای مقابله:انتخاب سنگریز مناسب دردامنه سراب برای محافظت آن از اثر امواج و در دامنه پایاب برای مقابله با اثراتزیانبار نزولات جوی و هوازدگی.  
موضوعات مرتبط: عمران-آب


0

بررسی روشهای تصفیه فاضلاب شهری:
انتخاب هریک از روش های تصفیه و درجه تصفیه فاضلاب بستگی به شرایط دفع پساب، شرایط محیطی (از قبیل رطوبت و درجه حرارت) و روش دفع دارد.
الف) تصفیه هوازی: این روش شامل تصفیه فاضلاب به کمک لاگون های هوادهی، لجن فعال، صافی چکنده و دیسک چرخان می باشد.
ب) تصفیه بی هوازی: شامل تصفیه فاضلاب به کمک سپتیک تانک، ایمهاف تانک و تصفیه توسط زمین می باشد. روشهای تصفیه بی هوازی برای شهر های بزرگ مفید نخواهد بود، چراکه راندمان تصفیه در مورد این گونه روشها بسیار پایین می باشد ولی کاربرد این روشها برای تصفیه فاضلاب جوامع کوچک قابل مطالعه و قابل بررسی است.
 همچنین کاربرد لاگون های هوادهی یا برکه های تثبیت نیز به خاطر زیاد بودن مساحت زمینی که نیاز دارد و همچنین بخاطر اینکه مقدار زیادی از فاضلاب تبخیر شده و این مسئله در مناطق با آب و هوای خشک فاقد هرگونه توجیه اقتصادی است ولی در صورتیکه تصفیه فاضلاب برای یک شهرک یا یک روستای بزرگ مطرح باشد، در اینصورت می توان تصفیه فاضلاب را به کمک برکه تثبیت مورد بررسی قرار داد. روش تصفیه فاضلاب به کمک دیسک چرخان نیز اغلب برای صنایع و یا جوامع کوچک کاربرد دارد.

تصفیه فاضلاب به روش لجن فعال:
روش لجن فعال در واقع هوادهی فاضلاب است که در طی آن مواد قابل تجزیه بیولوژیکی تجزیه شده و توده بزرگی از مواد قابل ته نشین بوجود می آید. در این روش عمل هوادهی جهت تامین اکسیژن موردنیاز توده بیولوژیکی و هم جهت اختلاط فاضلاب با لجن برگشتی صورت می گیرد. همچنین در این روش پس از انجام عمل تصفیه مقدماتی، فاضلاب وارد تانک هوادهی شده و در حین هوادهی مواد آلی محلول طی فرایند جذب سطحی به مصرف باکتری ها رسیده و مواد آلی کلوئیدی نیز تحت عمل آنزیم های باکتری به مواد محلول تبدیل شده و سپس جذب سطحی خواهد شد و بدین ترتیب جمعیت میکروبی زیاد پدید می آید.

تصفیه فاضلاب به روش صافی چکنده:
صافی چکنده در واقع محفظه ای است که انباشته از قطعات سنگی یا پلاستیکی که فاضلاب روی آنها پاشیده می شود و لایه ی نازکی از فاضلاب بر روی سنگها تشکیل می شود و سپس به صورت قطراتی به سمت پایین جریان می یابد. این لایه نازک مدتی بر روی سنگ باقی مانده و اکسیژن هوا را جذب کرده و فرصت می دهد تا میکروارگانیسم های هوازی عمل متابولیسم خود را انجام دهند.
مزایای این روش:
-قدرت نیترات سازی در این روش زیاد است
-بهره برداری از تصفیه خانه ساده است
-مخارج نگهداری صافی چکنده نسبتا کم است
-غلظت مواد آلی در لجن کمتر است و بنابراین هضم لجن ناشی از این روش ساده تر است
-بخاطر بالا بودن غلظت میکروبی سیستم می تواند افزایش ناگهانی آلودگی فاضلاب را به خوبی تحمل کند.
معایب این روش:
-کاربرد این روش موجب رشد مگس روی صافی و ایجاد بوی نامطبوع می نماید
-راندمان حذف بی او دی در این روش کمتر از راندمان حذف بی او دی در روش لجن فعال می باشد.
-کیفیت پساب در این روش از نظر تصفیه پایین تر از کیفیت پساب خروجی تصفیه خانه می باشد.
-این روش در مناطق سردسیر قابل اجرا نیست.


0

پارامترهای بیولوژیکی کیفیت آب
مقدمه:
آب محیطی است که هزاران گونه بیولوژیکی، بخشی یا تمام دوران حیات خود را در آن سپری می کنند. میکروارگانیزم ها (باکتری ها، قارچ ها و جلبک ها) کاتالیزورهای زنده ای هستند که امکان انجام برخی از واکنشهای شیمیایی را در آب فراهم می سازند.
بخش کثیری از واکنش های شیمیایی مهم، چون واکنش های مواد آلی و فرآیندهای اکسیداسیون واحیاء، از طریق واسطه های باکتریایی انجام می گیرد.
مهمترین ارگانیزم های بیولوژیکی موجود در آب، ارگانیزم هایی هستند که در ایجاد بیماری ها نقش اصلی را ایفا می کنند. این ارگانیزم های بیماری زا که منشاء آبی دارند در برگیرنده انواع...
-باکتری ها
باکتری ها، میکروارگانیزم های تک سلولی هستند که معمولآ بی رنگ بوده و جزء پست ترین اشکال حیانند.
بیماری روده و معده اغلب در اثر بیماری های منتقل شده توسط باکتری های بیماری زای آبزی هستند.
-ویروس ها
ویروس ها کوچکترین ساختمان های بیولوژیکی شناخته شده هستند که تمام اطلاعات زنتیکی لازم برای تولید مثل خویش را دارند.
ویروس ها انگل هایی هستند که برای زندگی خود اجبارا نیاز به یک میزبان دارند.
تعیین موثر بودن گندزدایی ویروس ها مشکل است، برای ارگانیزم های ویروسی آزمایش جامع و سریع وجود ندارد.
عدم قطعیت در گندزدایی ویروسی مشکل اصلی برای کاربرد مستقیم فاضلاب و پساب به حساب می آید.
-پروتوزا ها
پروتوزا ها ارگانیزم های تک سلولی هستند که به لحاظ فعالیت از باکتری ها و ویروس ها پیچیده ترند.
پروتوزا ها ارگانیزم های کامل و خود کفایی هستند که می توانند زندگی آزاد یا انگلی داشته باشند و خواص بیماری زایی یا غیر بیماری زایی از خود بروز دهند.
پروتوزا ها دارای سازگاری بسیار بالا با محیط دارند، بطور گسترده ای در آبهای طبیعی وجود دارند.
تحت شرایط حاد محیطی، پروتوزا های آبزی شبکه مقاومی را تشکیل می دهند که غیر فعال ساختن آنها به کمک عملیات گندزدایی کار مشکلی است.
-کرم های انگلی
چرخه زندگی کرم های انگلی معمولآ در بر گیرنده دو یا بیش از دو جانور به عنوان میزبان است.
آلودگی آب ممکن است از فضله حیوانی که حاوی کرم های انگلی است، ناشی شود. بدین ترتیب کرم های انگلی در وهله اول افرادی را تهدید می کنند که در تماس مستقیم با آب تصفیه نشده هستند.
-ارگانیزم های شاخص
تجزیه و تحلیل آب برای شناسایی عوامل بیماری زا وقت گیر و پر هزینه است. بنابراین عمومآ کیفیت آب با استفاده از ارگانیزم های شاخص ارزیابی می شود.
ارگانیزم شاخص، ارگانیزمی است که حضورش بیانگر آن است که آلودگی وجود دارد و علاوه برآن تا حدودی ماهیت و میزان آلاینده را نیز روشن سازد
ارگانیزم های شاخص کاملآ در محل غالب هستند و در محیط های مجاور وجود ندارند یا بطور بسیار محدود مشاهده می شوند.
بنابراین بطور معمول ارگانیزم هایی انتخاب می گردند که:
به راحتی قابل شناسایی باشند
همیشه در نقاطی که عوامل بیماری زا تجمع می نمایند، حضور دارند.
برای حفظ سلامت کارکنان آزمایشگاه، ارگانیزم های شاخص خود بیماری زا نباشند.
در محیط به سادگی و با سرعت نسبتآ زیاد تکثیر و گسترش  یابند.
اشریشیا کلیفرم (کلیفرم روده ای) از باکتری های شاخص برای تعیین آلودگی آب به فاضلاب های انسانی است. دلایل اصلی استفاده از کلیفرم روده ای بعنوان یک باکتری شاخص این است که:
در برابر شرایط نامساعد محیطی (مثل دما یا PH زیاد) مقاومت بالا دارند بطوری که اگر به دلیل نامساعد بودن محیط کلیفرم روده ای از بین برود می توان با اطمینان اظهار داشت که هیچ ویروسی یا باکتری بیماری زایی در محیط وجود ندارد.
تعداد (غلظت) این باکتری بسیار زیاد است بنابراین می توان اطمینان داشت اگر باکتری دیگری ناشی از فاضلاب های انسانی در نمونه وجود داشته باشد، کلیفرم روده ای نیز وجود دارد.
کلیفرم روده ای به تعداد میلیونی در روده بزرگ انسان وجود دارد و بیماری زا نمی باشد، بنابراین وجود آن در نمونه های آب خطری را برای کارکنان آزمایشگاه ایجاد نمی کند.

واحد اندازه گیری کلیفرم روده ای MPN است و مقدار آن در آب شرب باید صفر باشد.

 


موضوعات مرتبط: عمران-محیط زیست

0
نقش بتن اسفنجی در پایداری سازه ها

مقدمه

همانطور که می دانیم امروزه صنعت بتن نقش مهمی در ساخت و سازهای جوامع بشری ایفا می کند و یکی از عوامل بسیار موثر در سازه های بتنی در جهان است، البته باید به این امر مهم هم توجه داشت که مصرف بتن فقط در سازه های بتنی و امثال آن نیست.در این راستا تحقیقاتی به منظور استفاده از بتن در دیگر پروژه هاتوسط بسیاری از محققین این امر انجام شده و پس ازاین آزمایشات و تحقیقات فراوان، محققان موفق شدند به راه حل بسیار خوبی به نام بتن اسفنجی (بتن تراوا) دست یابند.

بتن اسفنجی توانست تحولات زیادی را در محوطه سازی شهرهای اروپا و آمریکا ایجاد کند، بتنی که از لحاظ وزنی بسار سبک و با تخلخل بالا می باشد.البته این نوع بتن هنوز در ایران جا نیفتاده است ‚ ولی اینجانب امیدوارم با تلاش مسئولین ادارات، مهندسین و متخصصین فن، این بتن نیز جایگاهی برای استفاده در پروژه های مختلف کشورمان داشته باشد. بعد از مطالعات، تحقیقات و آزمایشاتی که اینجانب در مورد این بتن انجام دادم به نتایج بسیار ارزنده ای رسیده ام که به بعضی از موارد مهم و اساسی آن در پایین اشاره کرده ام. مطمئنا هر چیزی معایب و مزایایی دارد ولی به حق می توان گفت که مزایای این بتن در نوع خود برای مصارف در بسیاری موارد نه تنها بهتر که مقرون به صرفه تر نیز می باشد. امید وارم نتیجه مطالعات و آزمایشات بنده که این مقاله می باشد مورد توجه انجمن مهندسین و متخصصین قرار بگیرد و به منظور تامین و تدارک زمینه هرچه بیشتر فاید این بتن از جمله حفظ بیشتر محیط زیست و مقرون به صرفه بودن مورد استفاده در پروژه های کشورمان نیز قرار بگیرد.
بتن اسفنجی چیست؟
با توجه به مقوله ها و مشکلات زیر:
1- خشکسالی که بسیاری از مناطق کشور ما گریبانگیر آن است.
2- پایین بودن سفره های آب زیرزمینی بدلیل گرمتر شدن جو زمین و استفاده نادرست از منابع آب زیر زمینی.
3- حفظ محیط زیست و توجه هر چه بیشتر به این مساله.
4- سرد تر شدن مناطق سردسیر بدلیل تلمبار شدن برف بر روی بامها، خیابانها و...
5- آلوده شدن نزولات جوی بدلیل جریان در سطوح آلوده و در نهایت آلوده کردن منابع آبهای زیر زمینی.
و هزاران دلایل دیگر و مطرح شدن این امر در مهندسی عمران به خصوص گرایش محیط زیست آن و در مقوله های مختلف اعم از بتن، باعث می شود تا فکر من و هر مهندس عمران علاقه مند به رفع این مشکلات به فکر چاره ای باشیم. نوع بتن جدیدی که بتنهای معمولی دیگر بنا به عدم تخلخل و نداشتن مقاومت بالا در برابر یخ زدگی قابل استفاده برای این راهکار نیستند. ولی بتن اسفنجی یا بتن تراوا بهترین نوع بتن برای حل این موارد صرفا از نظر مهندسی عمران و بتن مورد استفاده در محل می باشد.پس باید بدانیم بتن اسفنجی از چه موادی تشکیل شده و بهترین حالت اندازه مواد آن چه بوده و در حالت بهینه میزان موارد، چه رفتاری از خود نشان می دهد و مشخصات آن رفتار چیست، که بر اساس مشخصات و رفتارهای بتن در مقابل آزمایشهای آزمایشگاهی و صحرایی تا حد زیادی هم می توان به معایب و مزایای آن پی برد.
بتن اسفنجی یک مخلوط سنگدانه درشت(شن) سیمان ‚ آب و ماسه به میزان اندک(و گاهی اوقات بدون ماسه) است، استفاده از شن به جای ماسه در این نوع بتن دلیل تخلخل و فضای خالی مورد نیاز این بتن بنا به ضرورت مصرف می گردد.در ساختار این بتن %25-15 (از لحاظ حجم) فضای خالی وجود دارد و این امر موجب عبور آب از داخل این بتن می شود.
در بتن اسفنجی از آب نسبت به دیگر انواع بتن کمتر استفاده می شود و این مساله باعث شده تا پس از ساختن مخلوط بتن، آب آن به سرعت تبخیر شده و مخلوط در مدت یک ساعت کاملا از آب تخلیه شود.
نسبت مواد مختلف در بتن اسفنجی:
با توجه به نتایج تحقیقات بنده بهترین حالت برای میزان مواد مختلف در بتن اسفنجی عبارتند از:
نسبت مواد مقدار مواد
1- مواد دارای خواص بتن 270 تا 415 کیلوگرم بر متر مکعب
2- سنگدانه 1190 تا 1480 کیلوگرم بر متر مکعب
3- نسبت آب به سیمان (از لحاظ جرم) 0.27 تا 0.30 به ازای واحد
4- نسبت سنگدانه به سیمان (از لحاظ جرم) 4 تا 4.5 به ازای واحد
5- نسبت سنگدانه ریز (ماسه) به سنگدانه درشت (شن) 0 تا 1 به ازای واحد
رفتار بتن اسفنجی:
که با توجه به بهترین حالت برای میزان مواد در بتن، رفتار بتن و ویژگیهای آن اینگونه بروز نموده و ثبت گردید. (آزمایشاتی که بنده در آزمایشگاه دانشگاه انجام داده و گزارش گیری کردم.)
مشخصات مقدار
اسلامپ 20 میلیمتر
چگالی 1600 تا 2000 کیلوگرم بر متر مکعب
زمان گیرش 1 ساعت
تخلخل 15 تا 25 درصد
مقاومت فشاری 3.5 تا 4.2 مگا پاسکال
مقاومت خمشی 1.3 تا 3.8 مگا پاسکال
نصب بتن اسفنجی:
نصب بتن اسفنجی شامل 4 مرحله اساسی است:
1-مخلوط کردن
2-جا گذاری کردن(گماردن‚ قراردادن)
3-تراکم و فشرده سازی (کوبیدن)
4-عمل آوردن بتن
بوجود آوردن ‚ قراردادن و عمل آوردن بتن اسفنجی همه به جای اینکه در یک کارخانه زیر شرایط یکسان انجام شوند ‚ در محل کار(پای کار) انجام می شوند.
اگر چه بتن اسفنجی می تواند توسط همان تهیه کننده های بتن توپر تهیه شده و توسط همان کامیونهای بتن توپر تحویل داده شوند‚ اما این ویژگی های فیزیکی منحصر بفردش است که نیاز به یک پیمانکار با تجربه تخصصی دارد. همچنین تفاوت های ساختاری ما بین بتن اسفنجی و بتن غیر قابل نفوذ نصب متفاوت آن را نیازمند است.
به هر حال کیفیت و عملکرد بتن اسفنجی بستگی به میزان آشنایی و عملکرد نصب کننده و خاصیت ضربه های ساختاری (کمپکت) دارد.
این نوع بتن به دلیل مقاومت نسبتا پائین آن Psi 400 الیPsi 4000 اساس مشخص شده و پذیرفته شده ای برای مقاومت بالا نیست.و مساله مهمتر در موفقیت یک روسازی بتن اسفنجی مقدار پوکی (فضای خالی) آن است. البته باید بدانیم که زیر سازی این بتن و زمین زیرینش نباید کاملا غیر قابل نفوذ باشد و باید حداقل اندکی خاک و زیر سازی آن نفوذ پذیری داشته باشد.در مناطق ماسه ای هم بتن اسفنجی مستقیما بالای ماسه گذاشته می شود.
همچنین باید به این موضوع اشاره کرد که یخ زدن آب در داخل این بتن مشکلی ایجاد نمی کند زیرا آزمایش هایی صورت گرفته که در آن بتن اسفنجی را به مدت بیش از 15 سال در آب و هوای سرد گذاشته و آب باران و برف پس از ورود به داخل بتن یخ می زد.کاربرد موفق بتن اسفنجی در این مناطق این مساله را حل نموده است و مشکلی در به کاربردن این بتن در این مناطق وجود ندارد.
نقش مواد افزودنی (مواد دارای خواص سیمانی)در بتن اسفنجی
حال به برخی از آنها که نقش بسیار مهمی در ساختار بتن دارند و می توانند به جای سیمان مورد استفاده قرار گیرند (که در ایران از آنها به ندرت استفاده می شود)اشاره می کنیم.در واقع این موارد بر عملکرد زمان گیرش، میزان افزایش مقاومت، تخلخل، نفوذ پذیری و.... در بتن تاثیر می گذارند و در یک کلام کلید عملکرد بالای بتن در استفاده از موارد افزودنی (SCMS) است.
از آنجمله می خواهیم به گاز سیلیس خاکستر بادی و روباره که همگی دوام بتن را بوسیله کم کردن نفوذ پذیری و شکاف (ترک خوردگی) افزایش می دهند اشاره کنیم:
گاز سیلیس(Silica Fume):یک فراورده فرعی (محصول جانبی)از تولید سیلیکون است ‚ و از دانه های خیلی ریز و ذرات کروی شکلی تشکیل شده است و به طور موثری مقاومت و دوام بتن را افزایش می دهد.و به طور مکرربرای ارتفاعات بلند ساختمان ها به منظور افزایش مقاومت فشاری بتن (با استفاده از گاز سیلیس مقاومت فشاری بتن از Psi 20000 هم فراتر می رود.)استفاده می شود و می توان از آن %12-5 به جای سیمان در بتن استفاده کرد.
خاکستر بادی(Fly Ash): خاکستر بادی، محصول فرعی انبار زغال سنگ سوزان در نیروگاههای برق است و سالها قبل بعنوان ماده ای بی مصرف روی زمین روی زمین انباشته می شد و بدون استفاده بود. اما حالا بعنوان یک ماده مهم در صنعت سیمان سازی به کار برده می شود و می توان از آن 5 تا 65 درصد به جای سیمان در بتن استفاده کرد.
روباره (Blast Furnace Slang): روباره، محصول فرعی زباله در صنعت پولاد (فولاد) است، و سهم آن در مقاومت و دوام بتن بیشتر است و می توان از آن 20 تا 70 درصد به جای سیمان در بتن استفاده کرد.
مزایای بتن اسفنجی چیست و پیشنهادات بنده برای موارد استفاده از آن کدام است؟
بتن اسفنجی دارای مزایای اقتصادی و زیست محیطی فراوانی است، که البته مزایای زیست محیطی آن بیشتر مد نظر است. از مزایای اقتصادی آن می توان به پایین آمدن خرجهای فراوان به منظور هدایت آب باران و فاضلاب اشاره داشت. در واقع می توان گفت با وجود بتن اسفنجی نیازی به ساختن جوی های آب فراوان در سطح شهر و کنار خیابان و کوچه ها و همچنین کانالهای بزرگ آب نیست. زیرا این بتن هرگونه بارندگی را مستقیما به زمین و سفره های آب زیر زمینی منتقل می کند و در واقع یک مزیت زیست محیطی نیز محسوب می شود. از دیگر مزایای زیست محیطی آن می توان به موارد زیر اشاره کرد:
1- جلوگیری از بروز آب گرفتگی در معابر و مکانها به هنگام بارندگی
2- جلوگیری از آلوده شدن آب بارندگی ها (زیرا اگر زمین غیر قابل نفوذ باشد، آب باران و برف در سطح زمین که آلودگی فراوان دارد جریان می یابد و منجر به آلوده شدن آب بارندگی می شود). (پیشنهاد اینجانب)
3- پر شدن ذخایر آب زیر زمینی
4- در نقاط سرد که ماندن برف و باران روی زمین (بعد از بارش) منجر به سردتر شدن آن مناطق می شود می توان با استفاده از این بتن آب باران وبرف را به داخل زمین هدایت کرد و از سردتر شدن آن ناحیه جلوگیری کرد.
5- همچنین می توان از این نوع بتن در مکانهایی که نیاز به زمین خشک است استفاده کرد مثلا در زیر سازی چمنهای استادیوم های فوتبال. (پیشنهاد اینجانب)
6- همچنین در مناطق سردسیر، بدلیل عبور آب از این بتن از یخ زدگی سطح معابر و در نتیجه ایجاد خطر جلوگیری می کند که شهرداریها می توانند از این بتن در پیاده رو سازیها و محوطه سازی پارکها، پارکینگها ومعابری که مشکل آبگیری دارند استفاده نمود.(پیشنهاد اینجانب)
7- ایجاد مناظری زیبا به هنگام بارندگی، زیرا با وجود این بتن دیگر هنگام بارندگی آب گرفتگی وجود ندارد. (پیشنهاد اینجانب)
به امید روزی که شاهد استفاده بیشتر و بیشتر از این نوع بتن منحصر بفرد در موارد اصولی آن باشیم.


مراجع و مؤاخذ:
1- تکنولوژی بتن نویسنده: دکتر فرهاد کشاورز
2- مصالح ساختمانی نویسنده: مهندس کریم صمرقندی
3- مهندسی خاک وپی نویسنده: مهندس طاحونی
4- تکنولوژی بتن نویسنده: آلبرت دیسنی، مترجم: خانم ملیحه ذاکروند

 


موضوعات مرتبط: مصالح ساختمانی
برچسب‌ها: بتن

0
بتن ریزی در زیر آب

بتن ریز در زیر آب در ساختمانهای دریایی و آبی به کار می رود و لازمه آن:
کاربرد روشهای ویژه برای جلوگیری از خطر آب شستگی است،
استفاده از فرمول مخصوص برای ترکیب بتن، تا بتن همگنی خود را به هنگام فرو رفتن در آب حفظ کند.
1- روشهای مورد استفاده
برای بتن ریزی در زیر آب، چندین روش به کار برده می شود که تمام آنها حاصل یک اصل می باشند: به استثنای اولین بتنی که در زیر آب قرار داده می شود، بقیه باید طوری ریخته شوند که در تماس با آب واقع نشوند، بیشترین طرق مورد استفاده به شرح زیرند:
* روش پشته پیشرو
این روش در جاهایی به کار می رود که عمق آب کم بوده (حداکثر 8ر0متر9 و آب به حد کافی آرام باشد. روش این است که ابتدا مقداری بتن در آب، روی شیب ساحل، می ریزند، تا سطح بتن به بالای آب برسد، سپس بتن ریزی را روی آن ادامه می دهند. بتن جدید مقداری را که اول ریخته شده به طرف آب می راند، و این بتن است که در ادامه بتن ریزی، در تماس با آب خواهد بود و بقیه محفوظ خواهد ماند.
* روش بتن ریزی با لوله در داخل آب
این روش به کار می رود و نتیجه بهتری دارد. طریقه عمل این است که لوله ای فلزی، به قطر 25 تا 45 سانتی متر، که به طور موقت پاین آن را بسته اند، در آب فرو برده می شود و از داخل آن بتن را به پایین می فرستند، و موقعی که وزن بتن ریخته شده از رانش آب روی دهانه بیشتر می شود، بتن بیرون می ریزد و توده هایی به شکل حباب تشکیل می دهد که به تدریج که بتن اضافه می کنند، بزرگتر می شود.
لازم است که انتهای لوله در داخل بتن ریخته شده باقی بماند تا اثر آب فقط بر رویه حباب محدود گردد. این روش، به ویژه برای بتن ریزی در زیر آب پی پیاه های پلها (تحت حفاظت سیرهای فلزی یا سد موقتی) و برای بتن ریزی شمع ها و دیوارهای جدا کننده، در زر گل بنتونیت، به کار برده می شود.
2- مشخصات بتن ریخته شده در زیر آب
مشخصات بتن مورد استفاده در زیر آب را باید آزمایشگاه متخصص و با سابقه در این نوع کار تعیین کند، و نکات زیر رعایت شود:
چون بتن را زیر آب نمی توان لرزش داد، لذا باید سفتی بین 14 تا 16 سانتی متر داشته باشد که با اضافه کردن موادی که حالت خمیری به بتن بدهد و یا آن را روان تر نماید می توان تامین کرد.
مواد ریز کوچکتر از 80 میکرون (که ذرات سیمان هم جزو آن است) بیشتر از 400 کیلوگرم در متر مکعب بتن باشد، تا در مقابل آب شستگی بهتر مقاومت کند.
غالباً افزودنی های کاهنده مقدار آب و دیر گیراننده به کار گرفته می شوند.
موسساتی که بتن آماده به کار تهیه می کنند، در این موارد موادی از نوع کولوییدها به صورت گرد به بتن در حال مخلوط شدن اضافه می نمایند. این مواد با اجزای ریز بتن پوششی را به وجود می آورند، که در برابر شسته شدن مقاوم است.



برقراری پناهگاه حفاظتی
این عمل در تکمیل روش هایی که ذکر شد و برای کاهش اثرات تشعشع آفتاب یا باران بر روی بتن تازه انجام می شود. ضمنا نباید برقرار کردن پرده هایی را در دو طرف ساختمان که جریان هوا را از روی بتن محدود می کند (جریان هوایی که سبب تسریع تبخیر می شود) فراموش کرد.
2- شرایط اجرایی عمل آوری
عمل آوری بتن پس از قالب برداری و بر حسب طول مدتی که قالب بر قرار بوده انجام می شود.
اگر روی بتن قالب بندی نداشته باشد مانند کف ها، سطوح بالای تیرها، و سطوح از سرگیری بتن ریزی، عمل آوری بتن بلافاصله پس از اینکه آب زیادی را از دست داد (سطح بتن مات شد)، انجام می شود:
طول مدت ادامه عمل آوری تابع چندین عامل است:
سرعت سخت شدن بتن که تابع طبقه مقاومت بتن است،
رطوبت نسبی هوا،
گرمای هوا،
باد،
تابندگی آفتاب،
از سرگیری بتن ریزی
کمتر اتفاق می افتد که یک سازه بتنی در یک مرحله بتن ریزی شود. لذا باید در پایان بتن ریزی مرحله اول، و در ابتدای مرحله بعدی، ترتیباتی اتخاذ گردد که ظاهر بتن قابل پسند شود، و به پیوستگی مکانیکی هم خدشه ای وارد نگردد.
برای تامین زیبایی منظر، به هنگام تهیه طرح، مقاطع از سرگیری بتن ریزی را مشخص می نمایند و برای حسن انجام کار باید:
روی قالب ها، در نقاط تعیین شده قطعه چوبهای تراشیده ای قرار داد تا در سطح بتن یک خط صاف به وجود آورد، و یا در خط از سرگیری بتن ریزی "فرو رفتگی ایجاد شود که جزیی از منظره بنا به چشم آید. ضمناً ضخامت پوششی میله های فولادی در مقطع فرو رفته باید کافی باشد.
نقشه آهن بندی باید طوری تهیه شود که از سرگیری بتن ریزی در مقطع پیش بینی شده میسر باشد، البته آهنهای انتظاری که احیاناً لازم باشند، در نقشه منظور شده باشد.
در از سرگیری بتن ریزی باید دو گونه آماده سازی، هر دو روی بتن مرحله اول رعایت شود: یکی بعد از بتن ریزی مرحله اول و دوم قبل از شروع بتن ریزی مرحله دوم.
1- آماده سازی بعد از بتن ریزی مرحله اول
از سرگیری بتن ریزی ممکن است در سطحی افقی یا سطحی قائم انجام شود، ولی در هر حال باید سطح بتن قبلی زبر و عاری از شیره سیمان و گردوخاک و برآمدگی و تیزی قابل خورد شدن و ضایعات بتن و هر نوع ماده خارجی باشد.
اگر سطح بتن ریزی افقی باشد، ولو اینکه در آن آهنهای انتظار وجود داشته باشد، بتن ریزی به سهولت انجام و سطح افقی به آسانی به دست می آید. ولی برای سطوح قائم لازم است قالبی قبلاً قرار داد تا کار به نتیجه برسد.
قالب برای از سرگیری بتن در سطح قائم ممکن است:
مانند سایر سطوح قسمت مورد عمل بنا باشد،
به ترتیب فوق ولی با نصب شبکه فولادی یا قطعه فلز گسترده،
یا با شبکه فلزی ریز بافت که به وسیله گیره هایی کشیده شده و در جا نگهداری شده باشد.
آماده کردن محل از سرگیری بت ممکن است در زمانهای مختلف پس از بتن ریزی مرحله قبلی انجام شود:
- حالت بتن نسبتاً تازه و یا در حال گیرش (حدود 2 تا 3 ساعت پس از بتن ریزی).
آماده سازی محل از سرگیری بتن، در این حالت تنها در سطوح افقی میسر است، و عبارت است از شستن سطح بتن با آب تحت فشار خفیف (5 بار) که شیره سیمان را پاک کرده و سنگدانه های داخل بتن را آشکار می سازد.
- حالت بعد از پایان گیرش بتن (3 تا 24 ساعت پس از بتن ریزی).
در این حالت، آماده سازی ممکن است هم در سطوح افقی و هم در سطوح قائم، بلافاصله پس از قالب برداری و کندن شبکه فلزی انجام شود. طرز عمل این است که سطح بتن با آب تحت فشار تا حدی که مورد نظر است پاک شود.
- حالت پس از سخت شدن بتن
این روش که در تمام موارد قابل اجراست، از سایر موارد گرانتر است و در آن چکش هوایی یا کلنگ حجاری به کار برده می شود و در پی آن، با هوای تحت فشار سطح بتن را پاک می کنند. این روش تنها در صورتی که نتوانسته باشند در شرایط قبلی اقدام کرده باشند، اجرا می شود.
- به تاخیر انداختن سخت شدن بتن
یک ماده تاخیر کننده گیرش روی سطح بتن می پاشند، تا بتوانند بدون مشکلات اضافی، کار از سرگیری بتن را به تاخیر اندازند. در این مورد باید حداکثر توجه به سطح مورد نظر معطوف گردد، زیرا هر تجاوزی که به سطح مورد نظر بشود، در موقع به کار برد هوا فشرده یا آب تحت فشار، منجر به خسارت دیدن آن خواهد شد.
برای سطوح قائم، بهتر است یک کاغذ مخصوص آغشته به ماده تاخیر کننده روی سطح مورد نظر چسبانده شود. در مواردی که آب تحت فشار به کار برده می شود، باید آب یا شی به حد وفور انجام شود تا تمام آبهای آلوده به شیره سیمان تخلیه گردد.
2- آماده کردن محل قبل مرحله دوم بتن ریزی
برای اینکه بتن مرحله دوم بتواند گیرش را در شرایط مناسب انجام دهد، و با بتن مرحله اول یک پارچه گردد، کاری که معمولاً انجام می دهند، اشباع کردن سطح بتن مرحله اول از آب است تا سطح خشک بتن مرحله، آب بتن مرحله دوم را نکشد.
بررسیهای زیادی جهت تهیه چسبهایی خاص برای بتن انجام شده، که از سرگیری بتن ریزی آسان گردد. این مواد گاهی "مواد چسبان" نامیده می شود. هر چند آنها گران قیمت هستند، ولی نتیجه کاربردشان رضایت بخش است. با این وجود در هر مورد حساسیت آنها به آب باید بررسی شود.
کاربرد بتن در شرایط جوی سخت
هنگامی که در کارگاه، درجه گرمای هوا کمتر از 5 درجه سانتی گراد، و یا بالاتر از 25 درجه باشد، باید ترتیبات خاصی هم در مرحله بتن سازی و هم در مرحله کاربرد آن اتخاذ شود.



انواع محصولات بتنی
با قرار دادن اعضای کششی در قطعات بتنی توان کششی آنها را بالا می برند. این تکنیک محصولات بتنی را به دو دسته اصلی قطعات بتنی غیر مسلح و قطعات بتنی مسلح تقسیم می نماید.
با بالا رفتن مهاجرت به شهر و گسترش جمعیت در آنها، نیاز به ابنیه روز به روز افزایش می یابد. این مساله متخصصان دانش ساختمانی را بر آن داشت که در شرایط مطلوبی که در کارخانه ها فراهم می آورند در تمام طول سال قطعات بتنی را در مدت زمان کوتاه ریخته و آماده مصرف نمایند.این پیشرفت قطعات بتنی را به دو سته کلی محصولات بتنی در محل ریخته شده و محصولات بتنی پیش ساخته تقسیم می نماید.



بتن مسلح
بتن در برابر فشار مقاوم است، مقاومت آن در برابر خورد شدگی بین N/mm2 20 – 40 است و این مقدار در بتن های محکم N/mm2100 می باشد. با این حال مقاومت بتن در برابر کشش فقط 10 در صد مقاومت فشاری آن است. فولاد به عنوان یک ماده تقویت کننده در همه جا پذیرفته شده، چون مقاومت کششی بالایی دارد و ضریب انبساط حرارتی آن نزدیک به بتن است. قرار گیری فولاد در بتن مسلح بسیار مهم است. و باید اطمینان حاصل کرد که نیروه های کششی و برشی بر فولاد منتقل می شوند. میلگردهای طولی نیروهای کششی را تحمل می کنند در حالی که میلگرد های عرضی (خاموت) نیروهای برشی را متحمل می شوند و همچنین فولا را در داخل بتن ثابت نگه می دارند. به همبن دلیل خاموت ها بیشتر در محل هایی که نیروی برشی زیاد است و جود دارند، هرجند می توان از خم کردن میلگرد نیز برای این منظور استفاده کرد.
فولاد مورد استفاده در بتن مسلح به صورت میلگرد، میلگرد آجدار و یا میلگرد آجدار تاییده تولید می شود. فولاد با مقاومت بالا نیز با نورد گرم به میلگرد آج دار تبدیل می شود و همچنین با آهنکاری سرد به به میلگردهای تاییده آجدار تبدیل می شود.
حد اقل مقاومت متوسط فولاد با مقاومت بالا N/mm2460 است، تقریبا دو برابر فولاد معمولی. از فولاد ضد رنگ می توان در جاهایی که خطر خوردگی و جود دارد برای بتن مسلح استفاده کرد. شبکه های فولادی جوش کاری شده (مش) نیز برای تقویت دال های بتنی، راه ها و بتن پاشیده شده به کار می رود.
پیوند بین بتن و فولاد
برای اینکه بتن مسلح بتواند به عنوان یک ماده مرکب عمل کند باید پیوند بین بتن و فولاد محکم باشد، به این ترتیب همه نیروهای کششی به فولاد منتقل می شوند.
شکل و وضعیت سطح فولاد و کیفیت بتن همگی بر قدرت پیوند تاثیر می گذارند.
برای اینکه کارآتر ین پیوند ممکن به دست بیاید، باید سطح فولاد پوسته به صورت زنگ نداشته و چرب نباشد، ولی لایه نازک رنگی را که معمولا در نگه داری در کارگاه ایجاد می شود نباید برداشت. استفاده از انتهای قلاب شده در میلگرد معمولی خط بیرون آمدن میلگردها از بتن را تحت بار کاهش می دهد، ولی بهترین چسبندگی در میلگردها ی آجدار، که در تمام طول خود با بتن با بتن درگیر می شوند، به و جود می آید.گاهی تقویت بتن با استفاده از قفس های پیش ساخته (که می توان آنها را به جای بست ها و با مفتول های آهنی با جوش کاری به هم متصل کرد) انجام می شود. البته باید دانست که جوش کاری خیلی به ندرت در کارگاه بر روی خاموت ها انجام می گیرد.
این اتصالات را می توان به راحتی با مفتول فولادی که با پیچاندن سفت می شود، محکم کرد. از فاصله نگه دارها برای تامین فاصله مناسب بین تقویت کننده ها و سطح قالب بندی استفاده می شود.
بتن مرغوب چگال بهترین پیوند با فولاد را ایجاد می کند، باید بتن اطراف میلگردها را به خوبی متراکم کرد. بنا بر این اندازه دانه بندی سنگی در بتن نباید بیش از حد اقل فاصله قطعات فلز باشد.
خوردگی فولاد در بتن مسلح
فولاد در صورتی که بتن اطراف آن مرغوب باشد به خوبی متراکم شده و خود گیری آن کامل باشد، خودگی ندارد محیط قوی قلیایی داخل بتن (بر اثر سیمان هیدراته) فولاد را حفظ می کند. اما، اگر به دلیلی فضای خالی ایجاد شود یا پوشش کافی نباشد فولاد خراب می شود. ازدیاد حجمی که در اثر زنگ زدگی ایجاد می شود سطح فولاد را پوسته پوسته می کند و در نتیجه فولاد عریان می شود و زنگ زدگی پیشرفت می کند و در نهایت زنگ در به سطح بتن رسوب می کند. در بتن مسلح نباید از زود گیرهای کلرید کلسیم استفاده کرد.چون پس مانده آن باعث خوردگی سریع فولاد می شود.برای محافظت بیشتر در برابر خوردگی می توان از فولاد ضد زنگ یا فولاد گالوانیزه، با پوشش اپوکسی استفاده کرد.
سطح بتن بر اثر عمل کربناسیون حالت قلیایی خود را از دست می دهد و این باعث عدم محافظت از فولاد می شود. عمق کربناسیون به نفوذ پذیری بتن، مقدار رطوبت و ترک خوردگی در سطح آن بستگی دارد. به همین دلیل میزان اسمی پوشش محافظتی فولاد داخل بتن بر اساس میزان پیش بینی شده شرایط محیطی و درجه بندی مقاومت بتن محاسبه می شود.
میزان محافظت شده محاسبه شده برای همه نو مسلح کننده از جمله میلگرد، مفتول و الیاف مسلح کننده ثابت اعتبار دارد. گاهی می توان میزان کربناسیون را با استفاده از پوشش های محافظتی کاهش داد.
در حالی که در مورد ضخامت بتن پوششی اطراف اجزای کششی شک داریم می توان با یک دستگاه پوشش سنج ضخامت بتن را اندازه گرفت. اگر فولاد در بتن در حال پوسیدگی باشد می توان از محافظت کاتدیک به
وسیله یک جریان پیوسته که به فولاد وارد می شود برای جلو گیری از پوسیدگی بعدی استفاده کرد، این کار بتن کربناته را دوباره قلیایی می کند.



بتن پیش فشرده
مقاومت بتن در برابر فشار بالا است ولی در مقابل کشش ضعیف است. ایجاد پیش فشردگی در بتن با کابل های فولادی باعث می شود بتن همواره در تنش فشاری باقی بماند و در نتیجه میزان بار بری آن افزایش خواهد یافت. چون کابل ها در حالت فشرده قرار دارند و هر نیرویی را به نیروی فشاری تبدیل می کند و هیچ ضعفی در مقطع بتنی ایجاد نمی کند و بتن فقط تحت بارهای بسیار زیاد به کشش می افتد و ترک می خورد.
برای پیش فشرده کردن بتن دو سیستم متفاوت وجود دارد. در پیش کشیدن، کابل ها قبل از خود گیری بتن کشیده می شود و در پس کشیدن کابل ها پس از سخت شدن بتن کشیده می شوند.
پیش کشیدن
تعداد زیادی از قطعات بتن پیش فشرده، از جمله دال ها ی کف با روش پیش کشیدن تولید می شوند. کابل ها را به صورت آزاد در داخل قالب قرار می دهند و با دستگاه مخصوص کشش لازم را وارد می کنند. بتن ریزی را انجام می دهند و به کمک لرزاندن، هوای آن را تخلیه می کنند و شرایط لازم برای انجام خود گیری سریع تر را فراهم می کنند.طول اضافی کابل ها را که در دو انتها به کمک قطعات مخصوص صابت شده اند می برند و بتن را تحت فشار رها می کنند. مانند بتن مسلح پیش ساخته مقطع و محل قرار گیری کابل ها بر اساس بارها ی محاسبه شده مشخص و رعایت می شود.
پس کشیدن
در روش پس کشیدن، کابل ها را در قالب کار، داخل غلاف هایی قرار می دهند، بتن ریزی را انجام می دهند و وقتی به اندازه کافی خود را گرفت دو سر کابل ها را به طرف بیرون می کشند. این کار به وسیله گوه های مخصوصی که به دو سر سیم ها بسته می شوند و پس از قطع شدن کشش محکم می شوند انجام می گیرد.
معمولا بتن را به ویژه در نزدیکی گوه
ها، مسلح می کنند. در یک روش پس از کشیدن فضاهای خالی داخل غلاف را با دوغاب مخصوص پر می کنند. این کار فشار بر قلاب ها را کاهش می دهد. البته در روش دیگر سیم ها رها می مانند تا در داخل بتن آزادانه حرکت کنند. غلاف ها از تسمه های گالوانیزه یا پلی تن سنگین ساخته می شوند. ضریب پس کشیدن بر پیش کشیدن این است که می توان آنها را خمیده کرد تا در مسیر تنش قرار گیرند. به این ترتیب می توا ن بتن را به شکلی ریخت که کمترین حجم ممکن را داشته باشد. در تخریب یا دوباره سازی بهتر است بتن های پیش فشرده نچسبیده را از فشار خلاص کرد. البته تجربه نشان داده است که در صورت آزاد نکردن قطعه از فشار خطری ایجاد نمی شود. در دوباره سازی و تعییرات، سیم های تحت فشار گاهی باید دوباره قلاب دار و فشرده شوند. البته استفاده از بتن پیش فشرده جلوی جا به جایی سازه ای را نمی گیرد





بتن در نما
در بتن نما، چه پیش ساخته چه در کارگاه نه تنها به کنترل کیفیت بالایی نیاز است بلکه باید مشخصات و جزئیات مصالح را کاملا و با دقت در نظر گرفت. و یک سطح پایانی مرغوب که هوا زدگی شکل آن را به هم نریزد به دست آورد.
عوامل اصلی موثر در ظاهر بتن عبارتند از:
- ترکیب مخلوط اولیه (نسبت ها، نوع مواد)



بتن پیش ساخته
قطعات بتن پیش ساخته به صورت عمودی یا افقی هستند.البته نوع دوم فراوان است.به هر حال در قطعه نما دار و یا بدون نما رعایت مشخصات وکنترل کیفیت از اهمیت زیادی برخوردار است.قالب ها معمولا از تخته چند لا یا فولاد ساخته می شوند. هرچند قالب های فولادی با دوام ترند و برای استفاده مداوم منااسب می باشند، در کارهایی که فرم های پیچیده دارند از قالب های چوبی استفاده می شود. زیرا آنها را راحت تر می توان به شکل مورد نظر درآورد. قالب ها طوری طراحی می شوند که بتن به آنها نچسبد و اندازه های آنها دقیق باشد تا از کیفیت کاراطمینان حاصل شود.
از آنجایی که برای ساخت قالب ها قیمت بالایی پرداخت می شود، در کارها ی اقتصادی باید تعداد طرح های مختلف را کاهش داد. این مضوع می تواند اثر محسوسی در زیبایی ساختمان بگذارد.اتصالات و نگاهدارنده ها باید در داخل بتن کارگزاشته شوند و معمولا به قطعات کششی داخل بتن وصل می شند.



بتن کارگاهی
کیفیت بتن کارگاهی بستگی زیادی به قالب کار دارد، چون هر نقصی در بتن منعکس می شود. قاب باید به اندازه کافی محکم باشد تا فشار بتن تازه را تحمل کند و اتصالات باید بتوانند جلوی نشت بتن یا دوغاب آن را بگیرند. که در غیر این صورت سطح بتن به هم می ریزد. برای ساخت قالب می توان از انواع چوب، فلزات و پلاستیک ها بسته به سطح نهایی دلخواه استفاده کرد.
موضوعات مرتبط: مصالح ساختمانی
برچسب‌ها: بتن ریزی